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LETTER TO THE EDITOR 

An exact solution of the Schrodinger equation for a 
multiterm potential 

George P Flessas and A Watt 
Department of Natural Philosophy, University of Glasgow, Glasgow G12 8QQ, Scotland, 
UK 

Received 26 May 1981 

Abstract. We show that the Schrodinger equation with the potential Bx + Cx2+ Dx3+Ex4 
is exactly solvable on the half-line x 3 0, provided two simple relations between B, C, D and 
E hold. Some remarks concerning the B = D = 0 case are made. 

The exact solubility of the non-relativistic Schrodinger equation for various multiterm 
potentials is a subject which has recently attracted some attention (Quigg and Rosner 
1979, Flessas and Das 1980, Johnson 1980, Flessas 1981a, b, Magyari 1981). Interest 
in these anharmonic oscillator-like interactions stems from the fact that, in many cases, 
the study of the relevant Schrodinger equation, for instance in atomic and molecular 
physics or models in the charmonium system, provides us with insight into the physical 
problem in question. Moreover, in other cases non-relativistic exact results can be used 
for an extrapolation into the relativistic regime, for example in the context of the theory 
of the S-matrix of strong interactions (de Alfaro and Regge 1965). 

In this contribution we present a class of exact solutions and eigenvalues for the 
Schrodinger equation on the real half-axis x S O  

(d2/dX2 + E - V(X))Y(X) = 0, (1) 

V(x) = Bx + Cx2 + Dx3 + Ex4, C>O, E>O. ( 2 )  

E being the eigenvalue and 

A particular feature of V(x) in equation (2), a feature not possessed by other 
anharmonic potentials studied so far, is that it generates solutions which behave 
asymptotically as those for the B = D = 0 case: 

VI(x) = Cx2+Ex4.  (3) 
The asymptotic behaviour of the solutions for VI(x) is set out by Simon (1970). This 
might have been expected since in both V(x) and VI(X) the highest term is x4. 
Consequently, rigorous results for equation (2) may prove to be an appropriate starting 
point for the construction of analytic solutions to VI(x) which is of considerable 
importance in many investigations (Simon 1970). 

To find a suitable transformation for equation (1) we invoke a theorem (Kamke 
1967) regarding the behaviour of y(x) for x +a in (d2/dx2+g(x))y(x) = 0, if g(x)+ 
--CO as x + W .  Then, namely, 

I(d2y(x)ldx2)ly(x)l +-CO as x + a .  (4) 
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Equations (1)-(2) immediately show that the theorem applies here. Using now 
equation (4) we may ascertain after some algebra that a possible ansatz is 

y(x) =f (x)  exp(ax +bx2+cx3),  ( 5 )  

9c2 = E,  12bc = D (6) 

df(x)/dx + 0 as x +CO,  

with b and c being given by 

and a as yet unknown. Introducing equation (5) into equatior, (l), we obtain a 
differential equation for f (x)  which can be solved by examining its structure for x + 00. 

The result is 

f(x) = exp(-$x) [ Kl + K 2  Iox exp[(l - 2a)t  - 2bt2- 2ct3] dt , I (7) 

K1, K2 being constants, provided 

26 = 6 c  +4ab -B (8) 
3c = 4b2+6ac - C (9) 

(10) 1 2  ~ = - 2 b - ( ~ - ? ) .  

So we can distinguish two cases (cf equation (6)): 

b = -D/4E112, U =$-(2E+BE112)/D, 

E =-- D ( 2 E + F 1 ’ 2 ) 2 ,  
2E1I2 

while between B, C, D, E the relation 

D2 2EB+4E3’2 
4 E  D 

C=-+ 

must hold. Further, by utilising the mean-value theorem, we can assert the existence of 
a S ,  0 s 6 s x, such that the integral I (x )  in equation (7) can be written as 

I (x )  = exp[(l-2a)S -26S2] [‘exp(-2ct3) dt. 
0 

The integral in equation (15) is essentially the confluent hypergeometric function 
(Gradshteyn and Ryzhik 1965). Letting x +CO and taking into account equations (7), 
(1 l), (15) as well as the asymptotic formula for the confluent hypergeometric function, 
we deduce that 

I (x )  = exp[(l - 2a)x1-2bx: + ( ~ E ” * / ~ ) x ~ ] x - ~ ,  X+0O, (16) 

0 s x1 s (xl stands for S when in equation (15) we set c = -E112/3). Equation (16) 
shows that in equation (7) we have to choose Kz = 0 to ensure y(x) + 0 as x + 00 in 
equation (5). Since we are interested in symmetric potentials, which implies that for 
x s 0 the corresponding interaction is derived from equation (2) by replacing B and D 
with -B and -D, respectively, we impose on y(x) the conditions y ( 0 )  = 1 and 
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(dy(x)/dx)o = 0 which, for our case, are suitable for even-parity solutions. Therefore 
we finally obtain the physically acceptable solution to equation ( 1 ) :  

provided, as follows from equations (12) - (14) ,  equation ( 5 ) ,  equation (7) and 
(dY (x)ldx)o = 0, 

B = -2E‘/’, C = D2/4E,  E = D/2E‘I2. (18719)  
The above stated similarity of y(x) to the solutions for Vl(x)  in equation (3) becomes 
evident from equation (17). 

(ii) c = E1l2 /3 .  (20) 
First, we get the solution for x L 0 which is equivalent to equation (17) and V ( x )  = 
-Bx + Cx2 - Dx3 + Ex4, where B, C and E of course again satisfy equations (18)-(19): 

Second, returning to the treatment of V ( x )  in equation ( 2 ) ,  one can write down the 
relations corresponding to equations (12)-(14) and in a similar way arrive at the 
following solution to equation (1) which vanishes at infinity and satisfies y(0) = 1 :  

3 
D 2  y(x)=  -- e x p [ - ( 2 E - F 1 / 2 ) x + v x  +-x 

I ( a ,  ff 1 

- I ( c ~ , a ) +  J’ 0 exp [ (“-?‘I2)  t-- 2 E q ‘ 2 t 2 - Z E ‘ / 2 t 3 ]  3 d t ) ,  

x 3 0 ,  ( 2 2 )  

~r = -2E +BE‘/’ ( 2 3 )  

C = D 2 / 4 E  + 2aE’/’/D, E = - D / 2 E 1 / 2 - a 2 / D 2 .  (24 )  

D l a  = I ( a ,  a ) ,  ( 2 5 )  

provided 

The boundary condition (dy (x)/dx)O = 0 leads to the constraint 

which shows that D and a must have the same sign. If D > 0 then, as 

D D  a>2a=jo exp( -5t) d t > l ( a ,  a ) ,  

equation ( 2 5 )  cannot be satisfied. If on the other hand D < 0, then also a < 0 and as the 
left-hand side of equation ( 2 5 )  increases linearly with -D, while the right-hand side 
increases exponentially, equation ( 2 5 )  again cannot be satisfied. The same result is 
obtained if one tries to calculate a from equation ( 2 5 ) .  Thus we are left with the 
rigorous system of equations (17)-(19) for x 3 0  and equation ( 2 1 )  for x s 0. This fact 
taken in conjunction with the simi1ari;y which exists, in the sense mentioned above, 
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between equations (2) and (3) allows us to formulate the hypothesis that possibly some 
of the physics which pertains to the potential (3) might be reproduced by looking at the 
interaction (2) and the analogous one for x G 0. Finally, as has now been shown for the 
solutions of Flessas and Das (1980) by Khare (1981), the solutions presented here 
possess an interesting feature, namely in the limit D + 0, E + 0 with D < 0 and (cf 
equation (18)) D 2 / 4 E  = finite = C, they are inaccessible to conventional perturbation 
theory around the harmonic term since the correct energy is (from equation (19)) 
E = -C'I2 and not C1/2. 

One of us (GPF) wishes to thank A Khare for useful correspondence. 
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